
A SAT-Based Scheme to Determine Optimal Fix-free Codes

Navid Abedini, Sunil P. Khatri and Serap A. Savari
Texas A&M University, College Station

[novid_abed, sunilkhatri]@tamu.edu, savari@ece.tamu.edu

Abstract

Fix-free or reversible-variable-length codes are prefix condition codes which can also

be decoded in the reverse direction. They have attracted attention from several
communities and are used in video standards. Two variations of fix-free codes (with
additional constraints) have also been considered for joint source-channel coding: 1)
"symmetric" fix-free codes, which require the codewords to be palindromes; 2) fix-free
codes with distance constraints on pairs of codewords. We propose a new approach to
determine the existence of a fix-free code with a given set of codeword lengths, for each
of the three variations of the problem. We also describe a branch-and-bound algorithm
to find the collection of optimal codes for asymmetric and symmetric fix-free codes.

1. Introduction

Fix-free codes denote a class of variable-length codes which are both prefix-free and

suffix-free, that is, no codeword of a fix-free code is a prefix or suffix of another
codeword. One reason why fix-free codes are popular for data compression purposes is
that a finite sequence of fix-free codewords can be decoded instantaneously in both
directions. Fix-free codes were introduced five decades ago by Schutzenberger [1] as
anagrammatic codes and by Gilbert and Moore [2] under the title of never-self-
synchronizing codes. Later, they were studied in other papers ([3]-[5]) under a wide
variety of names such as reversible-variable-length, affix codes, bifix codes, bidirectional
Huffman codes and fix-free codes. The bidirectional decodability enhances the
robustness to channel noise ([5],[6]), as well as the speed of decoding process. This is
why fix-free codes are used within the video standards H.263+ and MPEG-4.

Two of the three variations of fix-free codes which we consider in this paper are
asymmetric and symmetric fix-free codes. In the latter case, each codeword is required to
be a palindrome, while this constraint is not present in the former case. Symmetric fix-
free codes have been found [6] to be more suitable for joint source-channel coding than
asymmetric fix-free codes. Many papers have explored the properties of and/or proposed
algorithms for the construction of both these classes of fix-free codes. For example, [8]
and [9] introduced algorithms to respectively construct asymmetric and symmetric fix-
free codes. A set of necessary and sufficient conditions on the existence of fix-free codes
can be found for the asymmetric case in [10] and for the symmetric case in [4], [7] and
[11]. However, these conditions are not exhaustive and there are instances for either
variation where both conditions fail. For such instances, we need a different approach to
determine if a fix-free code with a particular length sequence exists. Moreover, even
when the sufficient conditions establish the existence of a fix-free code with a given set
of codeword lengths, a procedure is needed to generate such a code. For fix-free codes

2010 Data Compression Conference

1068-0314/10 $26.00 © 2010 IEEE

DOI 10.1109/DCC.2010.22

169

with a length sequence ሺ݈ଵ, ݈ଶ, … , ݈௡ሻ whose Kraft-sum is 1 (i.e., ∑ 2ି௟೔௡௜ୀଵ ൌ 1), [5] provides
such an algorithm. The idea of formulating the existence and code construction problem
as a Boolean satisfiability (SAT) problem (see [12]) was first proposed in [13]. In this
approach, the constraints on codewords are translated into a Boolean function in the
Conjunctive Normal Form (CNF). If this function evaluates to TRUE, the underlying
problem is guaranteed to have a solution. The problem of finding an asymmetric (or
symmetric) fix-free code for a given set of codeword lengths can be converted to a SAT
problem. If the SAT problem is satisfiable (i.e., the CNF formula evaluates to TRUE for
some assignments of variables), a fix-free code exists for the given codeword lengths.
There are numerous software packages to solve the SAT problem (see, e.g, [14],[19]). If
a SAT solver determines that the SAT problem is satisfiable, it also provides information
from which we can generate a code with given codeword lengths for the fix-free problem.
In Section 2 we provide some basics of SAT. We offer new ways to map symmetric and
asymmetric fix-free problems to a SAT problem, which are more efficient than the
previous work [13]. Section 3 presents our formulation to map the problem of
determining the feasibility of both the symmetric and asymmetric fix-free codes (for a
given length sequence) to a SAT problem.

Error control techniques have always been of great interest in computer science and
communications, and many error detection and correction techniques have been
proposed. Maintaining a minimum distance between equal length blocks of code symbols
is a common method to provide error control capability. If an error occurs during the
transmission of a codeword, another word will be received by the decoder. Therefore, if
the assigned codewords are sufficiently distant from each other, the received word is not
likely to be identical to any other valid codewords other than the one transmitted, and the
occurrence of errors can hence be detected. In Section 2 we also present a precise notion of
distance in variable-length error correcting codes which was first discussed
in [18]. In Section 3 we also present the first approach to establishing the feasibility (using
SAT) of a length sequence for a variation of the fix-free problem with distance
requirements.

Consider a source with ݊ symbols, indexed by ሼ1,2, … , ݊ ሽ, and assume ݌ଵ ൒ ଶ݌ ൒ڮ ൒ ௜ is the probability of the ݅௧௛ symbol. Each symbol ݅ is mapped into a݌ ௡, where݌
codeword ܿ௜ which has length ݈௜. A minimum-redundancy or optimal code is one which
minimizes the average codeword length (i.e., ∑ ௜݈௜௡௜ୀଵ݌) over a class of codes. The
sequence of codeword lengths for an optimal code is called a dominant length sequence
[11], [13]. A number of papers (e.g., [15]-[17]) study the dominant length sequences for a
binary prefix condition code with ݊ words, and Gilbert [16] showed that the number of
such codes grows roughly as 0.148 ሺ1.791ሻ௡. In this paper we present a branch-and-
bound algorithm to find dominant length sequences for asymmetric fix-free codes, and
extend the results of [11] for the symmetric variation. Our new results show that the
number of asymmetric and symmetric fix-free dominant length sequences appear to grow
slowly with ݊ compared to binary prefix condition codes. Therefore for moderate sizes of ݊ it may be possible to store all dominant length sequences and easily obtain the best one
of these for a particular application.

170

2. Preliminaries and terminology

In this section, we review the basics of Boolean satisfiability (SAT), and also discuss

the different notions of distance used in the study of instantaneous, especially fix-free,
codes.

Definition 1: A literal is defined as a Boolean variable or its complement.
Definition 2: A conjunctive normal form (CNF) Boolean formula ݂ on ݊ Boolean

variables ݒଵ, ,ଶݒ ڮ , ,௡ is a conjunction (logical AND) of ݉ clauses ܿଵݒ ܿଶ, ڮ , ܿ௠. Each
clause is a disjunction (logical OR) of its constituent literals. For example, ݂ ൌሺݒଵ ൅ .ଶሻݒ ሺݒଵതതത ൅ ଶതതതݒ ൅ ଷതതതሻ is a CNF formula with two clauses, ܿଵݒ ൌ ሺݒଵ ൅ ଶሻ and ܿଶݒ ൌ ሺݒଵതതത ൅ ଶതതതݒ ൅ ଷതതതሻ. Boolean satisfiability (SAT) is the problem of determiningݒ
whether a Boolean formula expressed in conjunctive normal form (CNF) has a satisfying
assignment (i.e., an assignment of values to some or all variables of ݂ which makes the
function ݂ evaluate to TRUE). In the above example a satisfying assignment of variables
for function ݂ is ݒଵ ൌ 1, ଶݒ ൌ 0, ଷݒ ൌ 0. Theoretically, the SAT process can have two
outcomes 1) the problem is determined to be not satisfiable and 2) the problem is
satisfiable. In the latter case, a SAT solver also returns a satisfying assignment of
variables for the given CNF formula. In practice, however, if the SAT solver cannot
determine the satisfiability of the formula within a specified amount of time, it will return
unknown.

For error correcting purposes, it is common (see e.g. [18]) to consider a minimum
required “distance” between codewords of a code ܥ. For example, a minimum distance of
3 between two codewords of the same length provides the capability of correcting one bit
error. Traditionally, distance requirements are expressed based on the notion of Hamming
distance.

Definition 3: The Hamming distance ݄൫ݔ௜, ௝ݔ ௜ andݔ ௝൯ between two codewordsݔ of
the same length is defined as the number of positions in which ݔ௜ and ݔ௝ differ. The
minimum block distance ܾ௞ for the codeword length ܮ௞ of a code ܥ is the minimum
Hamming distance between all distinct codewords of ܥ with length ܮ௞ [18]. ܾ௞ ൌ min௫೔,௫ೕא஼, ௜ஷ௝ห௫೔หୀห௫ೕหୀ௅ೖ

൛݄൫ݔ௜, ௝൯ൟ (1)ݔ

The overall minimum block distance ܾ௠௜௡ of a code ܥ is the minimum block distance
for all possible lengths. In other words, ܾ௠௜௡ ൌ minଵஸ௞ஸ௠ ܾ௞ , where ܮ௠ is the maximum
codeword length in code ܥ. The diverging distance ݀൫ݔ௜, ௝൯ between two codewordsݔ
with different lengths หݔ௜ห and หݔ௝ห is the Hamming distance between the ݈-length
prefixes of codewords ݔ௜ and ݔ௝ with ݈ ൌ ݉݅݊൛หݔ௜ห, หݔ௝หൟ[18]. Similarly, the converging
distance ܿ൫ݔ௜, ௝ݔ ௜ andݔ ௝൯ is defined for ݈-length suffixes ofݔ . ݀൫ݔ௜, ௝൯ݔ ൌ ݄൫ݔଵ௜ ڮ ,௟௜ݔ ଵ௝ݔ ڮ ,௜ݔ௟௝൯ ܿ൫ݔ ௝൯ݔ ൌ ݄ ቀݔห௫೔หି௟ାଵ௜ ڮ ห௫೔ห௜ݔ , ห௫ೕหି௟ାଵ௝ݔ ڮ ห௫ೕห௝ݔ ቁ

(2)

The minimum diverging distance ݀௠௜௡ (minimum converging distance ܿ௠௜௡) of a

code ܥ is the minimum value of all diverging (converging) distances between every

171

possible pair of codewords in ܥ: ݀௠௜௡ ൌ min ௫೔,௫ೕא஼ห௫೔หஷห௫ೕห൛݀൫ݔ௜, ௝൯ൟݔ

(ܿ௠௜௡ ൌ min ௫೔,௫ೕא஼ห௫೔หஷห௫ೕห൛ܿ൫ݔ௜, .(௝൯ൟݔ

3. Problem formulation

In this section, we introduce a new SAT-based method to determine whether or not

there exists a fix-free code ܥ with the given length sequence ሺ݈ଵ, ݈ଶ, ڮ , ݈௡ሻ, where ݊ ൌ ଵ݈ ,|ܥ| ൑ ݈ଶ ൑ ڮ ൑ ݈௡, and ݈௜ is the length of ݅௧௛ codeword in ܥ. We consider three
variations of fix-free codes: 1) asymmetric fix-free codes, 2) symmetric fix-free codes
and 3) asymmetric fix-free codes with distance constraints.

We encode the constraints of the decision and assignment problem for a particular length
sequence as an instance of a Boolean satisfiability problem. This SAT instance is fed as the
input to a SAT solver (MiniSat [19] in our case). If the SAT solver returns a satisfiable
result, it will also provide a satisfying assignment of the variables from which we can
trivially construct the fix-free code. If the SAT solver returns an unsatisfiable result, we
can assert that there exists no fix-free code with the given length sequence, satisfying the
requirements of the corresponding variation. In the rest of this section we explain the
construction of the SAT instance that we use for each variation of our problem.

3.1 Clauses for asymmetric fix-free codes

Consider a fix-free code ܥ with codewords ݔଵ, ,ଶݔ ڮ , ݊ ௡, whereݔ ൌ Each .|ܥ|

codeword ݔ௜, ݅ א ሼ1, … , ݊ሽ , has ݈௜ bits and is expressed as ݒଵ௜ ଶ௜ݒ ڮ ௟೔௜ݒ , where ݒ௝௜ א ሼ0,1ሽ is
the ݆௧௛ bit in codeword ݔ௜. Suppose ݈ଵ ൑ ݈ଶ ൑ ڮ ൑ ݈௡. In this variation, each pair of
codewords ݔ௜ and ݔ௝ , ݅ ൏ ݆, (i.e. ݈௜ ൑ ௝݈) are required to satisfy

(i) The prefix condition: the first ݈௜ bits of ݔ௝ differs from the codeword ݔ௜.
(ii) The suffix condition: the last ݈௜ bits of ݔ௝ differs from the codeword ݔ௜.

These conditions are identical when ݈௜ ൌ ௝݈. A Boolean expression for the prefix
condition is ٿ ൫ݒ௞ప ൌ ௞ఫ൯௟ഢ௞ୀଵതതതതതതതതതതതതതതതതതതത. (3)ݒ

Define an intermediate variable ݖ௠,௡௜,௝ ؠ ൫ݒ௠௜ ൌ ٿ ௡௝൯. Then (3) can be rewritten asݒ ൫ݖ௞,௞ప,ఫ ൯௟ഢ௞ୀଵതതതതതതതതതതതതതത. (4)

By one of De Morgan’s laws, (4) is equivalent to ڀ ൫ݖ௞,௞ప,ఫതതതതത൯ ൌ ቀݖଵ,ଵప,ఫതതതതത ൅ ଶ,ଶప,ఫതതതതതݖ ൅ ڮ ൅ ௟ഢ,௟ഢప,ఫതതതതതቁ௟೔௞ୀଵݖ . (5)

The SAT clauses to describe the statement ݖ௞,௞௜,௝ ؠ ൫ݒ௞௜ ൌ ௞,௞ప,ఫതതതതതݖ௞௝൯ are ൫ݒ ൅ ௞௜ݒ ൅ ௞ఫതതത൯ݒ ר ൫ݖ௞,௞ప,ఫതതതതത ൅ ௞పതതതݒ ൅ ௞௝൯ݒ ר ൫ݖ௞,௞௜,௝ ൅ ௞పതതതݒ ൅ ௞ఫതതത൯ݒ ר ൫ݖ௞,௞௜,௝ ൅ ௞௜ݒ ൅ ௞௝൯. (6)ݒ

Let ܥ௞,௞௜,௝ denote the conjunction of these four clauses. Therefore to encode the prefix
condition between two codewords ݔ௜ and ݔ௝ with ݈௜ ൑ ௝݈ as a SAT problem, we need to
consider the conjunction of all clauses in (6) for ݇ ൌ 1,2, ڮ . ݈௜ and the single clause in
(5). We denote these clauses by ܵ௉௜,௝, i.e.,

172

ܵ௉௜,௝ ൌ ቀݖଵ,ଵప,ఫതതതതത ൅ ଶ,ଶప,ఫതതതതതݖ ൅ ڮ ൅ ௟ഢ,௟ഢప,ఫതതതതതቁݖ ෑ ௞,௞௜,௝௟೔ܥ
௞ୀଵ

(7)

The suffix condition between codewords ݔ௜ and ݔ௝ with ݈௜ ൑ ௝݈ can be similarly
encoded as a SAT problem. For the suffix condition, the last ݈௜ bits of ݔ௝ is compared to
the codeword ݔ௜,

ௌܵ௜,௝ ൌ ቀݖଵ,ሺ௟ണି௟ഢାଵሻప,ఫതതതതതതതതതതതതത ൅ ଶ,ሺ௟ണି௟ഢାଶሻప,ఫതതതതതതതതതതതതതݖ ൅ ڮ ൅ ௟ഢ,௟ണప,ఫതതതതതቁݖ ෑ ௞,ሺ௟ೕି௟೔ା௞ሻ௜,௝௟೔ܥ
௞ୀଵ

(8)

The SAT instance for finding a fix-free code ܥ with the word lengths ݈ଵ ൑ ݈ଶ ൑ ڮ ൑݈௡ , where ݊ ൌ is obtained by a conjunction of the clauses for prefix and suffix |ܥ|
conditions between each pair of codewords, ࣭௔௦௬௠ሺCሻ ൌ ෑ ൫ܵ௉௜,௝. ௌܵ௜,௝൯௜ୀଵ ௧௢ ௡ିଵ௝ୀ௜ାଵ ௧௢ ௡

(9)

where ܵ௉௜,௝ and ௌܵ௜,௝ are defined as in (7) and (8).

3.2 Clauses for symmetric fix-free codes

In addition to the clauses used by the asymmetric variation (expressed in (9)), checking

the feasibility of a length sequence in the symmetric version requires additional clauses
constraining each codeword to be a palindrome. However, we can utilize the properties of
symmetric codes to decrease the number of variables and clauses in the SAT instance and
consequently reduce the runtime of the SAT solver. In the following, we express a more
efficient formulation of the fix-free problem when we are considering symmetric
codewords. We begin with two simple observations.

In a symmetric code ܥ each codeword ݔ௜ ൌ ଵ௜ݔ ଶ௜ݔ ڮ ௠ିଵ௜ݔ ௠௜ݔ is a palindrome, and so ݔ௞௜ ൌ ௠ି௞ାଵ௜ݔ , ݇ ൌ 1,2, ڮ , ௜ห/2ඇ variables to expressݔTherefore, we only need ඃห .ۂ2/݉ہ
the codeword ݔ௜ as opposed to หݔ௜ห variables for an asymmetric code. It is also known (see,
e.g., [11]) that a palindrome ߪଵ is a prefix of another palindrome ߪଶ if and only if ߪଵ is
also a suffix of ߪଶ. Therefore the SAT based formulation of symmetric fix-free codes
requires only an encoding of the prefix condition. The number of clauses can be reduced
further when we consider codewords ݔ௜, |௜ݔ| ௝ withݔ ൌ |௝ݔ| ൌ ݈. In this case, it is
sufficient to compare the first ۀ2/݈ڿ bits of the two palindromes. Based on these
observations, we express the following efficient formulation of the symmetric fix-free
problem.

The SAT instance for finding a symmetric fix-free code ܥ with ݊ ൌ word lengths ݈ଵ |ܥ| ൑ ݈ଶ ൑ ڮ ൑ ݈௡ can be written as ௦࣭௬௠ሺܥሻ ൌ ∏ ൫ܵ௜,௝൯௜ୀଵ ௧௢ ௡ିଵ௝ୀ௜ାଵ ௧௢ ௡ , where ܵ௜,௝ is given by

173

ܵ௜,௝
ൌ ۈۉ

෍ۇ ௞,௞ప,ఫതതതതതቒ೗೔మቓݖ
௞ୀଵ ൅ ෍ ௟ഢି௞ାଵ,௞ప,ఫതതതതതതതതതതത୫୧୬൜௟೔ ,඄೗ೕమݖ ඈൠ

௞ୀቒ೗೔మቓାଵ
൅ ෍ ௟ഢି௞ାଵ,௟ണି௞ାଵప,ఫതതതതതതതതതതതതതതതതത௟೔ݖ

௞ୀ୫୧୬൜௟೔ ,඄೗ೕమ ඈൠାଵ ۋی
ۊ ෑ ௞,௞௜,௝ቒ೗೔మܥ ቓ

௞ୀଵ ෑ ௟೔ି௞ାଵ,௞௜,௝୫୧୬൜௟೔ ,඄೗ೕమܥ ඈൠ
௞ୀቒ೗೔మቓାଵ ෑ ௟೔ି௞ାଵ,௟ೕି௞ାଵ௜,௝௟೔ܥ

௞ୀ୫୧୬ ሼ௟೔ ,඄೗ೕమ ඈሽାଵ
When ݈௜ ൌ ௝݈, the preceding expression reduces to ܵ௜,௝ ൌ ቀ∑ ௞ୀଵۀ௟೔/ଶڿ௞,௞ప,ఫതതതതതݖ ቁ ∏ ௞ୀଵۀ௟೔/ଶڿ௞,௞௜,௝ܥ .

As an example of the efficiency of this formulation, the feasibility check of a
symmetric fix-free code with ݈ଵ ൌ ڮ ൌ ݈ସ ൌ 3, ݈ହ ൌ ݈଺ ൌ 4, ݈଻ ൌ ڮ ൌ ݈ଵ଴ ൌ 5, ݈ଵଵ ൌڮ ൌ ݈ଵସ ൌ 6, ݈ଵହ ൌ ڮ ൌ ݈ଶ଴ ൌ 7, ݈ଶଵ ൌ ڮ ൌ ݈ଶସ ൌ 8 and ݈ଶହ ൌ ݈ଶ଺ ൌ 9 requires 6273
clauses and 1684 variables while the approach of [13] uses 35526 SAT clauses and 156
variables.

3.3 Clauses for asymmetric fix-free codes with distance constraints

Imposing distance constraints between the codewords of a code introduces an error

correcting capability to the code. In practice [18], we require ܾ௠௜௡ ൌ ݀௠௜௡ ൅ ܿ௠௜௡ ൌ ݀
and ݀௠௜௡ ൌ where typical values for ݀ are 3, 5 and 7. The distance constraints ,ۀ2/݀ڿ
between each pair of codewords ሺݔ௜, ݅ ,௝ሻݔ ൏ ݆, are as follows: 1) When ݈௜ ൌ ௝݈, we
require ݄ሺݔ௜, ௝ሻݔ ൒ ݀. 2) When ݈௜ ൏ ௝݈, we require ݀൫ݔ௜, ௝൯ݔ ൌ ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ଵ௝ݔ ڮ ௟೔௝ݔ ቁ ൒ۀ2/݀ڿ and ܿ൫ݔ௜, ௝൯ݔ ൌ ݄ ቀݔଵ௜ ڮ ௟೔௜ݔ , ௟ೕష೗೔శଵ௝ݔ ڮ ௟ೕ௝ݔ ቁ ൒ To summarize, we have .ۂ2/݀ہ

requirements of the form ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ൒ ݀Ԣ, where ݎ א ሼ1, ௝݈ െ ݈௜ ൅ 1ሽ and ݀ᇱ א ሼ݀, ,ۀ2/݀ڿ ሽ. For small values of ݀, like the ones considered in earlierۂ2/݀ہ
literature, it is more efficient to alternatively consider ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ് ݇ for ݇ ൌ 0,1, ڮ , ݀Ԣ െ 1. In the following we express the formulation of these distance
constraints as a SAT problem.

Note that ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ൌ ݇ means two sequences, ݔଵ௜ ڮ ௟೔௜ݔ and ݔ௥௝ ڮ ௥ା௟೔ିଵ௝ݔ , differ in ݇ positions and are the same in the remaining ݈௜ െ ݇ positions. Let ݖ௠,௠ା௥ିଵ௜,௝ ؠ ൫ݒ௠௜ ൌ ௠ା௥ିଵ௝ݒ ൯ indicate if two sequences agree in the ݉௧௛ position; here ݒ௠௜ ൌ ௠௜ݔ , the ݉௧௛ bit of codeword ݔ௜. Therefore the constraint ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ൌ ݇ is the same as having ݇ values of ݖ௠,௠ା௥ିଵ௜,௝ ’s, for ݉ ,ሼ1א ڮ , ݈௜ሽ, be equal to 0 and the remaining values be equal to 1. For example, ݖଵ,௥ప,ఫതതതതത ݖଶ,௥ାଵప,ఫതതതതതതത ڮ ௞ାଵ,௞ା௥ାଵ௜,௝ݖ ௞,௞ା௥ప,ఫതതതതതതതതݖ ௞ାଶ,௞ା௥ାଶ௜,௝ݖ ڮ ௟೔,௥ା௟೔ିଵ௜,௝ݖ says that two sequences, ݔଵ௜ ڮ ௟೔௜ݔ
and ݔ௥௝ ڮ ௥ା௟೔ିଵ௝ݔ , differ in the first ݇ position and are the same in the remaining ݈௜ െ ݇
positions, resulting in the Hamming distance of the two sequences being equal to ݇. Since

174

any ݇ out of ݈௜ positions can be selected there are a total number of ൫௟೔௞൯ ൌ ௟೔!௞! ሺ௟೔ି௞ሻ!
Boolean expressions like the previous one. Hence, ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ൌ ݇ can be
expressed as the disjunction of these ൫௟೔௞൯ statements. By one of De Morgan’s laws, ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ് ݇ is equivalent to the conjunction of the complements of the ൫௟೔௞൯ conditions mentioned above. Let ܵஷ௞ሺ݅, ݆, ሻ denote the Boolean formula inݎ
conjunctive normal form for the preceding statements. Therefore ݄ቀݔଵ௜ ڮ ௟೔௜ݔ , ௥௝ݔ ڮ ௥ା௟೔ିଵ௝ݔ ቁ ൒ ݀Ԣ can be expressed as a SAT problem as ܵஹௗᇲሺ݅, ݆, ሻݎ ൌ∏ ܵஷ௞ሺ݅, ݆, ሻௗᇲିଵ௞ୀ଴ݎ ∏ ௟,௟ା௥ିଵ௜,௝௟೔௟ୀଵܥ , where the ܥ௟,௟ା௥ିଵ௜,௝ clauses, defined as in (6), describe the
statement ݖ௟,௟ା௥ିଵ௜,௝ ؠ ൫ݒ௟௜ ൌ ௟ା௥ିଵ௝ݒ ൯. To determine the feasibility of the length sequence ሺ݈ଵ, ݈ଶ, ڮ , ݈|஼|ሻ for the distance-constrained variation of the problem, we consider the
conjunction of all Boolean expressions ܵஹௗᇲሺ݅, ݆, ௝ݔ ௜ andݔ ሻ for each pair of codewordsݎ ሺ݅ ൏ ݆ሻ, ࣭ஹௗሺCሻ ൌ ∏ ൫Sஹୢᇲሺi, j, rሻ൯୧,୨,ୢᇲ,୰୨வ௜ , where ݀Ԣ and ݎ for each ݅, ݆ א ሼ1, ڮ , ሽ ሺ݅|ܥ| ൏ ݆ሻ

are given by ቊ ݀ᇱ ൌ ݀ , ݎ ൌ 1 if ሺ݈௜ ൌ ௝݈ሻ ሺ ݀ᇱ ൌ ,ۀ2/݀ڿ ݎ ൌ 1ሻ ܽ݊݀ ൫ ݀ᇱ ൌ ,ۂ2/݀ہ ݎ ൌ ௝݈ െ ݈௜ ൅ 1൯ if ሺ݈௜ ൏ ௝݈ሻ

4. Dominant length sequences

The concept of dominant length sequences has recently appeared in [13] and is related

to majorization [20]. Following [13], we say that the length sequence ሺ݈ଵ, ݈ଶ, ڮ , ݈௡ሻ
dominates another length sequence ሺ݈ଵᇱ , ݈ଶᇱ , ڮ , ݈௡ᇱ ሻ whenever ∑ ௝݈ᇱ௜௝ୀଵ ൒ ∑ ௝݈௜௝ୀଵ for each ݅ א ሼ1, ڮ , ݊ሽ. Under the preceding condition, if ሺ݈ଵ, ݈ଶ, ڮ , ݈௡ሻ is the length sequence of a
fix-free code, then ሺ݈ଵᇱ , ݈ଶᇱ , ڮ , ݈௡ᇱ ሻ cannot be a sequence of codeword lengths
corresponding to a fix-free code with lower redundancy. The length sequence ሺ݈ଵ, ݈ଶ, ڮ , ݈௡ሻ of a fix-free code is called a dominant sequence if it is not dominated by the
length sequence of another fix-free code.

Our new results on dominant length sequences for asymmetric and symmetric binary
fix-free codes are presented in this section, and are based on a branch-and-bound
algorithm (see, e.g., [22]). This algorithm utilizes the SAT based checks described in
section 3. To implement the algorithm, we use a tree organization in which the leaves,
which are nodes at level ݊, correspond to the length sequences of codewords for a source
with ݊ symbols and each node at level ݇ ൏ ݊ is the sequence of first ݇ elements of its
descendents. We start from the root which is an empty length sequence and traverse the
tree in a depth-first manner. Each node ݉ (or partial length sequence) is tested against
certain criteria. If at least one of these criteria is met, the search rooted at node ݉ will be
bounded since the subtree rooted at this node cannot contain a dominant length sequence.
If not, we branch further (i.e., we continue searching through the subtree rooted at this
node). During the search, we store a database ܦ of feasible and infeasible partial length
sequences, and this information is used while running the algorithm for larger values of ݊. The pseudo code of the algorithm for the asymmetric binary fix-free case is presented
in Table 1.

175

FIND_DOM_ASYMMETRIC(n)
(i) ࡼ ՚ ሾ ሿ //initializing ࡼ as an empty array
(ii) Answer ՚ ሼ ሽ
(iii) BRANCH_ASYMMETRIC(P,n) //branching
(iv) RETURN(Answer)

BRANCH_ASYMMETRIC(P,n)
1 if (Kraft_Sum(P) < 5/8){
כ࢒ 2 ՚ െࢍ࢕࢒૛ ൬ቀ૞ૡ െ ሻቁࡼሺ࢓࢛ࡿ_࢚ࢌࢇ࢘ࡷ /൫࢔ െ ሻ൯൰ࡼሺࢎ࢚ࢍ࢔ࢋ࢒

3 } else{ כ࢒ ՚ ૛࢔ െ ૜ }
4 for i ՚P[length(P)] to כ࢒{ // branching the node P
ሿ࢐Ԣሾࡼ 5 ՚ ࢐׊ ሿ࢐ሾࡼ ൌ ૚, … , ሻࡼሺ݄ݐԢሾ݈݁݊݃ࡼ , ሻࡼሺ݄ݐ݈݃݊݁ ൅ ૚ሿ ՚ Ԣ is a child of Pࡼ // ࢏
6 Bound ՚ FALSE
ሿ࢐ሾכࡼ 7 ՚ ࢐׊ ሿ࢐Ԣሾࡼ ൌ ૚, … , , Ԣሻࡼሺ݄ݐ݈݃݊݁ Ԣሻࡼሺ݄ݐሾ݈݁݊݃כࡼ ൅ ሿ࢐ ՚ ࢐׊ ࢏ ൌ ૚, … , ࢔ െ Ԣሻࡼሺ݄ݐ݈݃݊݁
8 if (כࡼ is dominated by any length sequence in Answer){
9 Bound՚TRUE //כࡼ, the best leaf rooted from ࡼԢ, is dominated
10 } else if (Kraft_sumሺࡼԢሻ ൑ 1){
11 f1 ՚ CHECK_ASYMMETRIC_DATABASEሺࡼԢሻ
12 if (f1 = unknown){
13 f2 ՚ CHECK_ASYMMETRIC_FEASIBILITYሺࡼԢሻ //checking if ࡼԢis feasible using SAT
 //based test if necessary
ࡰ 14 ՚ ,Ԣࡼሺڂࡰ Ԣresultࡼ ૛ሻ //Updating the feasibility database withࢌ
15 }
16 if (lengthሺࡼԢሻ = n){ // ࡼԢ is a leaf
17 if (f1 = True OR f2 = True){
18 Answer ՚ ሼ࢘ࢋ࢙࢝࢔࡭, Ԣሽࡼ
19 Bound՚TRUE
20 }
21 } else{ // ࡼԢ is not a leaf so it possibly can be branched
22 if (f1 = True OR f2 = True){
23 BRANCH_ASYMMETRICሺࡼԢ, ሻ࢔
24 }
25 }
26 }
27 if (Bound = True){
28 EXIT // search is bounded
29 }
30 }

Table 1. Branch-and-bound algorithm to find dominant sequences of
asymmetric fix-free codes

FIND_DOM_ASYMMETRIC(n) returns dominant length sequences corresponding to

asymmetric binary fix-free codes with ݊ codewords. Suppose ࡼ ൌ ሺ݈ଵ, … , ݈௞ሻ is a partial
length sequence, where ݇ ൌ ሻ. BRANCH_ASYMMETRIC(P,n) checks the subtreeࡼሺ݄ݐ݈݃݊݁
rooted at node P, by recursively calling itself for those children which can be branched
upon, to find the dominant sequences with partial sequence ࡼ. The next codeword length ݈௞ାଵ satisfies ݈௞ ൑ ݈௞ାଵ ൑ is determined (lines 1-3) based on following כ݈ where ,כ݈
observations,
(i) An optimal asymmetric fix-free code has Kraft-Sum not less than 0.625 [21].
(ii) A fix-free code for ݊ codewords can be obtained from the Huffman code with ݊
codewords by concatenating each Huffman codeword with itself in reverse and removing
an intermediate bit. The maximum codeword length for this code is 2݊ െ 3.

176

In each iteration of FOR loop (lines 4-30), the descendants of node ࡼ are examined in a
depth-first order, using the bounding criteria. Each check is performed only if all of the
preceding checks fail. The bounding checks are as follows;
Line 8: If כࡼ, the best leaf rooted from ࡼԢ (a child of ࡼ which we are checking at this
iteration), is dominated by some previously found dominant sequences, then none of the
remaining leaves rooted from ࡼ can be dominant and hence ࡼ should be bounded.
Line 10: If the Kraft-sum of ࡼᇱ is greater than 1, ࡼᇱ is infeasible and should be bounded.
Line 11: CHECK_ASYMMETRIC_DATABASE(ࡼԢ) searches for ࡼԢ in the maintained database
and returns TRUE or FALSE if it is found to be respectively feasible or infeasible. If there
is no information about this sequence in the database, it will return UNKNOWN.
Line 13: CHECK_ASYMMETRIC_FEASIBILITYሺࡼԢሻ checks the feasibility of ࡼԢ by first
testing the necessary and sufficient conditions (Theorems 1 and 2 of [10]). If they fail, we
perform the SAT-based test. There are two cases for ࡼԢ to be considered,
(i) Lines 16-21: ࡼԢ is a leaf. If it is feasible, it will be added to the answer and node ࡼ will
be bounded since other leaves with partial sequence ࡼ are dominated by ࡼԢ. Otherwise,
the next child of ࡼ will be examined.
(ii) Lines 22-24: ࡼԢ is an internal node. If it is feasible, it will be branched by calling
BRANCH_ASYMMETRICሺࡼᇱ, .will be examined ࡼ ሻ. Otherwise, the next child of࢔

The algorithm for the symmetric version is similar to the presented algorithm for the
asymmetric case after substituting the symmetric version of functions instead of
asymmetric ones. Note also that the 5/8 lower bound on the Kraft-sum is true for the
asymmetric case only, therefore for symmetric problem we always consider ݈כ ൌ 2݊ െ 3.
It should also be noted that in CHECK_SYMMETRIC_FEASIBILITYሺࡼԢሻ, we use the
necessary and sufficient conditions presented in [11] for symmetric binary fix-free codes

5. Results

The results of running the algorithm for both the asymmetric and symmetric variations

are presented respectively in Tables 2 and 3.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number 1 1 1 2 2 4 7 8 10 14 20 29 38 55 66 79 99 124
Table 2. Number of dominant sequences for asymmetric binary fix-free codes

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number 1 1 1 1 2 2 3 3 4 4 6 6 8 11 11 13 13 17

Table 3. Number of dominant sequences for symmetric binary fix-free codes

It is seen that the number of dominant sequences for symmetric fix-free codes grows

very slowly. The growth of this number for the asymmetric case is faster, however, there
are much fewer asymmetric fix-free dominant sequences compared to the Huffman
codes. For example, there exist 5269 dominant sequences for Huffman codes with ݊ ൌ 18 codewords while this number is just 124 for the asymmetric fix-free codes. Based
on our results, we propose the following conjecture.

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
18 21 22 24 26 29 32 34 36 42 43 46 48 49 53

177

Conjecture: For each dominant length sequence ሺ݈ଵ, … , ݈௡ሻ corresponding to an
asymmetric or a symmetric fix-free code with ݊ codewords, we have ݈௜ ൑ ݊ for ݅ ൌ1,2, … , ݊ and ∑ ݈௜௡௜ୀଵ ൑ ∑ ݅௡௜ୀଵ ൌ ݊ሺ݊ ൅ 1ሻ/2.

The sequence ሺ1,2, … , ݊ሻ corresponding to the symmetric code ሼ0,11,101,1001, … ሽ is
always a dominant sequence in both the symmetric and asymmetric cases. In our
experiments, this length sequence plays a similar role to the dominant length sequence ሺ1,2, … , ݊ െ 1, ݊ െ 1ሻ of a binary prefix condition code: it has the maximum sum-length
and the maximum codeword length among all dominant sequences.

References

[1] M. P. Schutzenberger, “On an application of semi-group methods to some problems in coding,” IRE

Trans. Inform. Theory, vol. IT-2, pp. 47–60, Sept. 1956.
[2] E. N. Gilbert and E. F. Moore, “Variable-length binary encodings,” Bell Sys. Tech. J., vol. 38, pp. 933-

967, 1959.
[3] J. Berstel and D. Perrin, Theory of Codes, Orlando: Academic Press, 1985.
[4] Y. Takishima, M. Wada, and H. Murakami,“Reversible variable length codes,” IEEE Trans. Commun.,

vol. 43, pp. 158–162, Feb.-Apr. 1995.
[5] A. S. Fraenkel and S. T. Klein, “Bidirectional Huffman coding,” Computer J., vol. 33, pp. 296-307,

1990.
[6] R. Bauer and J. Hagenauer, “Iterative source/channel-decoding using reversible variable length codes,”

Proc. DCC, pp. 93–102, Snowbird Utah, March 2000.
[7] C. W. Tsai and J. L. Wu, "Modified symmetrical reversible variable-length code and its theoretical

bounds," IEEE Trans. Inform. Theory, vol. 47, pp. 2543-2548, Sept. 2001.
[8] H.-W. Tseng and C.-C. Chang, “A fast and simple algorithm for the construction of asymmetrical

reversible variable length codes,” Real Time Imagine, vol. 9, pp. 3-10, 2003.
[9] H.-W. Tseng and C.-C. Chang, “Construction of symmetrical reversible variable length codes using

backtracking,” Computer J., vol. 46, no. 1, pp. 100-105, 2003.
[10] C. Ye and R. W. Yeung, “Some basic properties of fix-free codes,” IEEE Trans. Inform. Theory, vol.

47, pp. 72-87, 2001.
[11] S. A. Savari, “On optimal reversible-variable-length codes,” ITA 2009.
[12] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem proving,”

Communications of the ACM 5, vol. 7, pp. 394–397, 1962.
[13] S. A. Savari, “On minimum-redundancy fix-free codes,” Proc. DCC, Snowbird, UT, March 2009.
[14] J. P. Marques Silva and K. A. Sakallah, “GRASP - a new search algorithm for satisfiability,” ICCAD,

pp 220-227, 1996.
[15] E. Norwood, “The number of different possible compact codes,” IEEE Trans. Inform. Theory, vol. IT-

13, pp. 613-616, 1967.
[16] E. N. Gilbert, “Codes based on inaccurate source probabilities,” IEEE Trans. Inform. Theory, vol. IT-

17, pp. 304-314, 1971.
[17] S. Even and A. Lempel, “Generation and enumeration of all solutions of the characteristic sum

condition,” Inform. and Cont., vol. 21, pp. 476-482, 1972.
[18] V. Buttigieg and P. G. Farrell, "Constructions for variable-length error-correcting codes," in

Proceedings of Cryptography and Coding, 5th IMA Conference, Cirencester, UK, pp. 282-291, Dec. 95.
[19] N. Een and N. Sorensson, “MiniSat: A SAT solver with conflict clause minimization,” SAT 2005.
[20] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, UK : Cambridge Univ. Press, 1952.
[21] S. Yekhanin, “Improved upper bound for the redundancy of fix-free codes,” IEEE Trans. Inform.

Theory, vol. 50, no. 11, pp. 2815-2818, Nov. 2004.
[22] A. H. Land and A. G. Doig, “An automatic method for solving discrete programming problems,”

Econometrica, vol. 28, pp. 497–520, 1960.

178

